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Abstract. A modified self-avoiding walks model previously proposed for the square lattice 
is applied to the triangular and honeycomb lattices. In the model, the walker is restricted 
not to take any turn which will put the walker in a direction rotated by more than a certain 
angle, a,,., from any of the directions previously taken. The generating functions are 
obtained, and various quantities are evaluated exactly. For all three (square, triangular 
and honeycomb) lattices, it is found that the model exhibits the characteristics reminiscent 
of one-dimensional self-avoiding walks in all directions, while strongly retaining the 
anisotropic effect of the direction of the first step. 

For the honeycomb lattice, we have studied the model for amax = ii (A-model) and 
Omax =$v (B-model). Unlike other walks, the B-model exhibits a special property: the 
oscillations between even and odd steps in various quantities such as the number of N-step 
walks do not decay as the number of steps increases. 

1. Introduction 

Faced with insurmountable difficulties in the exact analysis of self-avoiding walks 
(SAWS), modified SAW models with additional restrictions have been actively investi- 
gated. Recently, we have also introduced one such model ([l], hereafter called I) for 
two-dimensional walks. In the model, the additional restriction is that all turns which 
will put the walker in a direction rotated b y  more than a certain angle, @,.,, measured 
from any of the directions taken previously, are prohibited. The model is amenable 
to exact analysis and yet the results are not trivial. The model has been applied to the 
square lattice and the results were reported in 1. To understand the nature of the walks 
such as critical exponents, universality, etc, additional results for other lattice structures 
are desired. For these purposes, we have studied the model for the triangular and 
honeycomb lattices, and we report the results in this paper. 

The model is much more general than that of directed self-avoiding walks ( D S A W ~ )  

[2-51 in the sense that it generates many more walks in addition to all of the walks 
permitted in DSAW~.  Unlike in DSAW, the walker, in this model, may reach all of the 
quarters ofthe plane when @,,, is chosen properly. The DSAW exhibits mixed behaviour, 
displaying the characteristics reminiscent of one-dimensional  SAW^ in  certain directions 
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and random-walk (RW) like characteristics in other directions [2-51. This model, 
however, shows the characteristics reminiscent to one-dimensional  SAW^ in all directions 
while strongly retaining the anisotropic effect of the direction of the first step. 

The spiral self-avoiding walks (SSAW~) model exhibits different critical behaviour 
in the square and triangular lattices [6-111. This model, however, shows the same 
critical behaviour in all three (square, triangular and honeycomb) lattices. 

Due to the wavy nature of the walks in the honeycomb lattice, more than one value 
of @,,, may be defined. We have studied the model for @,,,= T (A-model) and 
QmaX=$r  (B-model). The noted property of the ordinary SAW on honeycomb lattice 
[12-171, that various quantities such as number of N-step walks exhibit strong oscilla- 
tions between even and odd steps, is further strengthened in the B-model to such an 
extent that the oscillation becomes permanent. It is caused by the fact that the additional 
restriction of the model enhances the already favoured odd-step walks of the ordinary 
SAW. On the other hand, in the A-model, the additional restriction of the model 
suppresses the odd-step walks of the ordinary SAW, and the even-odd oscillation decays 
faster than in the ordinary SAW. Even in the B-model, however, the even-odd oscillation 
of the mean square end-to-end distance decays as N + CO. 

For the sake of clarity and conciseness, we list the bulk of the results in the appendix 
in such a format that all relevant informations can be extracted easily. In section 2, 
we introduce the model and derive the generating functions for the triangular and 
honeycomb lattices, In section 3, we present a brief discussion of the results and 
compare them with other results. 

2. The models and the generating functions 

We fix the direction of the first step in a particular direction. The walks started out in 
other directions can be obtained easily by the symmetry considerations. In many 
occasions, such as in studying the persistency of the first step [18-201, the results 
containing only the walks started out in one particular direction are much more useful. 
Unless specified otherwise, all the results shown in this paper are for the walks started 
out in the particular direction defined. 

For the studies of the walks in the triangular and honeycomb lattices, we need to 
define U+ and U, directions as in figure 1, in addition to the x+ directions in the 
Cartesian coordinate system. 

In addition to the usual self-avoiding condition, we impose in this model a global 
restriction that the walker may not take any turn which will put the walker in a direction 
rotated by more than @,,, from any of the directions taken previously. In general, 
@,,,is defined as the angle that the walker will, when rotated by more than a,,, from 
the direction previously taken, sight the line of the extension of the direction previously 
taken. When a lattice such as honeycomb has wavy lines of extension, more than one 
value of a,,, may be defined. We report here the results for two values of @.,,, in 
the honeycomb lattice. 

2.1. Triangular lattice 

For the walks in the triangular lattice, we need to define the following basic generating 
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Figure 1. The directions of the walks in the triangular and honeycomb lattices. 

functions: 

Here, G,(x+) is the generating function of one-dimensional SAWS restricted to X+ 

direction, while in G,(x+,x_)  both x+ and x- directions are permitted. The 
G,(x+l U+, U-) is a three-choice DSAW permitted to walk in the U+, U- and X+ directions 
in the triangular lattice, and G,(x+,x-lu+, U-) is a four-choice DSAW restricted in 
x+, x- and U+, U- directions [3]. In the expressions, the bars are used to indicate 
symmetry relations. For an example, G,(x+,x_lu+, U-) is symmetric in X+ and x-, 
and U+ and U-. 

As shown in figure 2, we fix the first step in the X+ direction. It is easily seen that 
e,,, = T in the triangular lattice. Let us suppose that the walker takes a U+ or U- 
direction after the initial x, steps. After these U+ or U- steps, if the walker never takes 
a U, or U- step, the walk becomes a four-choice DSAW permitted to take steps in x,, 
x- and U-, U+ directions. These walks are represented by x+G,(x+)(u++u_)x 
G ~ ( x + , x - / u + ,  0-1. 

On the other hand, if the walker is to take any step in the U+ direction, all walks 
just before the U+ step must end with an x+ or U+ direction. Such walks can be written 
as {u-G, (u_) (x++ U+)+ U,). After these steps, the walks would be a four-choice DSAW 

in U-, U, and u+,x+ directions minus all walks not having any step in U+ direction. 



1906 In-mook Kim et al 

Figure 2. Walks in the triangular lattice. The walks AB, AC are prohibited, while the walks 
AD, AE, AF are permissible. 

Such walks can be represented by 

X+ GI (x+)l 0- G ,  (O-)(X+ + U+) + u+K Gdu-, U+ I U+, x+) - GI( U- I U+, x+)). 

If the walker is to take any step in U- direction, the walks is to be represented by 

x+Gi(x+)u+Gi(u+)(x++ u + ) l G d ~ + ,  u-Ix+, U+) - G,(u+/  x+, U + ) ] .  

From the symmetry consideration of the model, we get similar forms for the walks 
turned to the U+ or U- direction after the initial X+ steps by simply changing U+ to U+ 

and U- to U-. Therefore, the generating function for the triangular lattice is given by 

Gtri = IG,(x+) - 11 +&+: U+, 0-1 + g(x+: U+,  U-) (2) 

where 

g(x+: U+, 0-1 = ~ + G , ( x + ) ( u + +  u-)G,(x+, X - I  U+, U-) 

+ x + G , ( ~ + ) l ~ - G i ( ~ - ) ( x + + u + ) +  U+] 

Performing contour integrals over the generating function [see I], a number of the 
desired quantities may be obtained, such as the total number of N-step walks, the 
total number of steps in the given direction in the ensemble of the N-step walks, and 
the mean square end-to-end distance. We list the results in the appendix. 

2.2. Honeycomb lattice 

Due to the wavy nature of the line in the honeycomb lattice, two values of @,,,ax can 
be defined as shown in figure 3. We call it the A-model when = 7~ and attach the 
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Figure 3. Two models in the honeycomb lattices. In the B-model (@,..=f~), the walks 
&A,A,A,A,, and C,C,C, are permitted, but not in the A-model In the 
A-model. only walks like &B,C,D,E, are permitted. 

superscript A in all expressions for the model, while for @,,, = $r, we designate it as 
the B-model and use superscript B. We fix the first step to the x+ direction, and this 
automatically implies that the walks cannot start from the lattice point having no x+ 
branch. Therefore, care must be taken when one talks about average quantitites. 
However, the walks starting out in other direction can be obtained easily by the 
symmetry consideration, and thus any average quantities including averages over all 
starting points may be obtained, if desired. 

For the honeycomb lattices, we need the following generating functions: 

Here, G,[u+,  U - ]  is the generating function for a one-dimensional SAW permitted to 
go only one direction taking U +  first and then U- and U +  steps alternately in the 
honeycomb lattice, while in G l [ v + ,  U-; U+, U - ]  movements in both directions are 
permitted. Since the walker in the honeycomb needs to take two steps in order to make 
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a turn to another direction, we need to define G,[u+,  U-, (U,)] etc in which the walks 
end up with the steps enclosed in ( ). The G,[x+l U+, U-] is the generating function of 
a two-choice DSAW in the honeycomb lattice in which the walker is restricted to taking 
steps in the U+, U- and x+ directions. The G,[x+l U+, U-; U+, U-] is the generating 
function of a three-choice DSAW in which the walker is restricted to taking steps in 
(U+, U+) and (U-, U-) alternately, after X+ steps are taken. To symbolize the wavy nature 
of the walks, we use the brackets [ 3 instead of the parentheses ( ) in these expressions. 

Following the similar argument as for the triangular lattice, we obtain the generating 
function for the A-model: 

(5) A A Gtc=x++g (x+:u+,u-)+g ( X + : U + . U _ )  

where 

gA(x+: U t ,  0-1 

= x+u+Gz[u+I U-, x-, (x+)l 

+ x+G,[u+, U-, (~+) lx+(Gdx+ I U + ,  U- (U+)] - G [ x +  I U+, 0-ll 
+ x+~+Gi[x+ 3 U+ 9 (x+)I{G[u+ I X+, U+ 3 (U-)] - G [ U +  Ix+ 1 U+]). ( 6 )  

Also for the B-model, we obtain 

G:== x+ +gR(x+: U+, u-)  +gB(x+: U+, U-) (7) 

where 

gB(x+: U + ,  U-) 

= x + G i [ ~ + ,  x+l 
I I " + " , L " + , X + , ( U + : : i i _ ~ 3 [ D ~ ~ I ~ ,  - P. r., "+; u-,x+: 

+x+u+{GJu+ I U-, xi;  X-, U+] - G,lu+l U-, x+; X-1) 

+x+Gi[u+, U-, (u+)lx+{GJx+l~+. U+; U-, u-)l-G,[x+I~+, U+; 0-1) 

+x+u+G~[x+,  U+, (x+)l{GJ~+lx+, U-; U+, X-)I 
-G,[u+Ix+, U-; U+]). (8) 

The G,[u+lx+, U-; U,] is the same generating function of a three-choice DSAW as 
G,[u+/x+, U-; u+,x_] but the x- step is prohibited. 

We list various quantities obtained from the generating functions in the appendix. 

3. Discussion 

For the triangular lattice, as N + m ,  the number of N-step walks, aN, reduces to 

The average number of the steps in given directions are reduced to: 

(x-)- (i -- 33y0;119)N 
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It is seen that the walk exhibits the characteristics reminiscent of one-dimensional 
SAWS in all directions. We have expressed the results in such a way that the anisotropic 
effects of the direction of the first step can be seen clearly. 

The mean square end-to-end distance is reduced to 

The results for the A-model in the honeycomb lattice show similar behaviour. For 
example, 

a N - - ( T )  s+3& 1+J3 
5 

The results for the B-model in the honeycomb lattice also confirm the above 
conclusions. However, the model exhibits the seemingly peculiar behaviour that the 
even-odd oscillations in aN, bN and cN do not decay as N increases. For example, 

aN - ( y) ( & ) " [ I  - ( -1IN(97 - 5 6 m .  

It has been known that, in the ordinary SAW, the even-odd oscillations are most 
significant in the honeycomb lattice, strongly favouring the odd-step walks [12-171. 
This is due to the small coordination number of the honeycomb lattice, and the fact 
that the first intersection of the walks occurs at even steps in the ordinary SAW. The 
already favoured odd-step walks of the ordinary SAW are further enhanced in the 
B-model since the first prohibited step due to the additional restriction of the model 
has occurs at even steps. In the A-model, the contrary happens, and the chance of 
odd-step walks are suppressed. Therefore, as shown in figure 4, the even-odd oscillation 
in the A-model decays faster than in the ordinary SAW while the oscillation in the 
B-model persists forever. However, owing to its symmetry nature, the even-odd oscilla- 
tion of the mean square end-to-end distance decays even in the B-model as n + m: 

( R ~ )  - $ N * .  (14)  
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Figure 4. The behaviour of aN in the honeycomb lattice for (a) the ordinary S A W  [IS], 
(b)  the B-model and (c) the A-model. The aN/aN-> is plotted against N. As the broken 
venical line at N = 21 highlights, the already favoured odd-step waits in the ordinary SAW 

are enhanced in the B-model while the tendency is suppressed in the A-model. 

Appendix. Exact results 

In the following, we list various quantities obtained from the generating functions for 
the triangular and honeycomb (A- and B-model) lattices. The results are all exacf. The 
a N  is the number of N step walks. The b 3 '  etc represent the total number of steps 
in the x+ direction, etc, in the ensemble of the N-step walks. The c g )  (c!.?') is the 
square of the horizontal (vertical) distance of the N-step walks. The mean square 
end-to-end distance is given by (R2)= (c$ '+  &') /aN.  

A l .  The triangular lattice 

b$+l=- (",' - ') "[ ( 1 0 2 m +  238)N + ( 2 8 i m f  867)] 
2312 

" [ ( 1 0 2 m  -238)N + ( 2 8 1 m -  867)] 

-3N-'( N f 2 )  -a 

[ ( 6 8 m +  68)N + (289 - 3 9 m ) l  +a (A3) 



Exactly solvable self-avoiding walks model: II 1911 

N[(323+ 5 1 m ) N  -(289+ 5 7 m ) J  

2312 

- 3N-22( N - 1) 

N -  2312( 2 ) 
(A4) 

b c - ) = b ( " - l - -  __ m+3 " [ ( 1 7 0 + 3 4 m ) N - 6 4 m ]  

+( -1 )N-  ,,',, ( ~ y-3) "[ (170 - 3 4 J l i ) ~  +64Ji7] 

-3N-2(N-  1) (A51 
C ( h l - -  __ (3822m+9826)]  

17 
(,.ii2+')" [ (765 + 1 1 7 m ) N 2 +  (987h7+3843)N+ 

-9248 

9248 

-( 3822m-9826)]  17 - 3N-2( 4 N 2 + 1 3 N + 1 )  2 -; (A61 

3 m+3" 
&I=- ___ ( 9248 ) [ ( S 5 m + 2 2 1 ) N 2 + ( 3 2 3  - 5 m ) N  - (  1 4 2 m +  578)] 

3 m - 3 N  
- (-]IN- (7) [ ( 8 5 m - 2 2 1 ) N 2  - (323 + 5 m ) N  

9248 

- ( 1 4 2 m -  578)] -3N-2( ( 4 N + l ) ( N - l ) )  +-. (A71 

A2. The honeycomb lattice: A-model 

3 6 + 5  & + I  3&-5 A-1 
a N  = (7) (7) -(-l)N (7) (1) 

b!2'=$ ( F ) N [ ( l O f i +  10)N+ (23&+25) - (-1)N(25 -5&) ]  

-(-1)NL(~)N[(10&-10)N+(23&-25)+(-1)N(25+5&)] 50 2 

-;(A) [ (3 + 2 a ) N  + (4&+ 2)] 

- ( -1)Ni(,6)N[(3 - 2 A ) N  - (4.4'2 - 2)] (A9) 

N [ (  1 0 6  - 10)N - (25 + 3&) + (- 1)N('Z5 - 5&)] 

N 

- (- 1)" (e) [( 1 OJS + 1O)N + (25 - 3J5) 
100 2 

- ( -UN(25 + S A ) ]  (A101 
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"[( 15 + 5 a ) N  - 3 8 +  ( -1)N5&] 

+ (-1 I N &  (F) "[( 15 - 5 a ) N  + 3 A -  ( - I ) N 5 f i ]  

-&(&)"[(3&+4)N - 3&] + ( -l)N$&)N 

x[ (3f i -4)N-3&]  ( A l l )  

N[ (30+ lO&)N - (31\/5+25) - (-1)N(25fi-  2511 
200 

+ ( - 

+( -1 )N(25~+25) ] - i$ ( f i )N[ (&+l )N- (2+&)]  

1 a-1 
200 (1) [ (30 - 1 0 6 )  N + (3 1& - 25) 

+ (- 1) N & ( f i )  [ (& - 1) N + (2 - A ) ]  (A121 

1 ( J s + l \ N  S h ) - -  __ r t n r n  I , o n  E j r r 2  I I L L ~  E x x r  , 3 7 7  E - C A \ ?  

L N  -2000\ 
,) L I + J V T l O W J l i Y  T I L O I V T O O V V _ ) ) 1 V  -{ '+OVJ--LJV)J 

+ (- 1 ) & (F) [ (450 - 180A) N2 + (2610 - 6 6 0 A ) N  

+ (477\/5+ 250)l- (-1) N A  f N [ ( 6 f i ) N  - (27&- lo)! 

+ ( - 1 ) N ~ ( ~ ) N [ ( 6 & ) N - ( 2 7 & + 1 0 ) ]  

80\ 2 / 

(45 + 2 7 f i ) N 2 +  (60fi+ 54)N + S f i ]  

- ( -1)N&(fi)N[(45 - 27&)N2 - ( 6 0 f i -  54)N - S A ]  ( ~ 1 3 )  

pi-- - N [ ( 8 0 f i +  150)N2+ (20&+ 10) N - (500+ 7 8 ) ]  
-2000( 2 

3 J s - 1  
ruuu \  I / 

3 A-1 

f-'I [(go&- 150)N2+(20A- 10)N+(500-7&)! 

+ ( - l ) N ~  ( T)  [ ( 2 f i ) N  + (20+ a ) ]  

- ( - 1 ) N ~ ( ~ ~ N [ ( Z J s ) N - ( 2 0 - J s ) 1  U " ,  6 1 I 

3 
128 

-- (a)"[ ( 9 f i +  9 ) N 2  - (12&+ 2 ) N  + 3 f i ]  

+ (- 1) &Jzj N[(9Jz - 9) N 2  - (12Jz - 2) N + 3Jz l .  ( ~ 1 4 )  
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A3. The honeycomb lattice: B-model 

bg*)=&&)N[(33+ 19&)N+(78&+ l05)l 

+ ( (33 - 19&)N-(78&- l05)l 

[( 20&+ 20) N + (46&+ 50) - (- 1) "( 50 - 10f i ) l  
100 

(A161 

100 

+(-l)N(50+10&)]-~(-1)N -1 

b ( " - ) - L  -36(&)N[(3&+5)N-(12&+13)] 

- ( -1)N&(~6)N[(3&- 5 ) N  - ( l 2 J s -  13)l 

-L (F) N [ (  lo&- 10) N - (25 +3&) + ( -1)N(25 - S A ) ]  

+ ( -l)N& ( y)N [( lo&+ 10)Nf (25 - 3&) - ( -ON(25 +SA)]  

100 

-i(-l)N+ 1 ( ~ 1 7 )  

b$'= bc*'=&(&)"[(11&+19)N+(13-2&)] 

-(-I)"&(&)"[ (1 l a -  19)N - (13 + 2&)1 

&+ 
[(60 + 2 0 4  N - 1 2 a +  (- 1) N(20J5)1 -47) 200 

N 

- ( -,INL (*) [(60 - 20&)N + 12& - (- 1)N(20&)1 
200 2 

+ ? , - i j N  r l  -I 2 (Ais)  

b c - )  = b c - )  = &,(a)N[ (23&+ 39)N - (105 +36&)1 

-(-I)"&(&)"[ (23&-39)N + (105 -36&)] 

200 \ L / 

N 

- (-1INL 200 (*) 2 [(30- 10fi)Nf (31&- 25) 

+ (-1)N(25&+ 25)] +a( + f (A19) 
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C ( h ) - L  N - ,,,(V')N[(13V'+21)N2+(234+ Il6V')N -(174+23&)] 

- (-I)"&(&)"[ ( 13&-21) N 2  - (234 - 116A)N t- (174 -23a)] 

" [(450 + 1 SO&) N 2  + (2610 + 6 6 0 ~ 6 )  N - ( 4 7 7 A  - 250)] 

1 A-1 
- ( T )  - 180A)N2 + (2610 - 6 6 0 A ) N  

I 

+ (477\/5+250)] - (-l)N- __ N[(6v6)N-(27\/5+10)] 
80( 2 ) 

+t (qj N [ ( 6 f i ) N  - (27\/5- IO)] + (- I)"$+$ (A201 

C!$= &(V')"[ (27+ 15V')N'+ ( 7 6 A +  102)N - ( 2 1 3 A +  258)] 

+ ( - 1 ) " & ( ~ ! % ) ~ [ ( 2 7 -  15V')N'- (76V'- 102)N+(213A-258)] 

N[(240&+450)N2+ (60&+ 30)N - (1500+21A)] 
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